Drinking water production – What are the risks from dumping RO concentrates and antiscalants into the aquatic environment?

Carolin Bertold¹, Florian Gigl¹, Anja Rohn², Gerhard Schertzinger², Beat Schmutz³, Sebastian Egner³, Dominic Armbruster³, Oliver

Happel³, Henner Hollert¹, Sarah Johann^{1*}, Sabrina Schiwy^{1*}

¹Department Evolutionary Ecology & Environmental Toxicology (E³T), Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany ²IWW Water Centre Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany

³TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany

*contributed equally to senior authorship

Correspondance: johann@bio.uni-frankfurt.de / bertold@bio.uni-frankfurt.de

Background

- Reverse Osmosis (RO) plants are used for drinking water purification and water softening
- RO products: permeate (for drinking water production) and concentrate

Concentrates

- Directly discharged into rivers or indirectly via WWTP -> regarded with increasing concern
- Concentrated salts and antiscalants (AS), may contain anthropogenic trace substances (e.g., PFAS)

Antiscalants

- Additives used in RO plants to reduce membrane fouling
- Based on phosphonates or polyacrylates
- Environmental risk: low biodegradability; possible contribution to the migration of trace metals; phosphonates could lead to eutrophication [1]

Aims and objectives

- Developing a comprehensive bioassay battery for the ecotoxicological assessment of AS and concentrates
- Evaluating the effect of AS active ingredients in complex mixtures (concentrates and technical products)
- Evaluating different concentrate treatment strategies (data not shown)
- Contributing to a holistic evaluation of NF/RO technology in drinking water treatment

NF/RO treatment

Samples

Antiscalants*

Standards and technical products of

- \rightarrow ATMP
- \rightarrow DTPMP
- \rightarrow PBTC
- → Polyacrylicacid

*Ca-saturation (20 mmol functional groups/L)

Con A ATMP

Polyacrylate/DTPMP

RO Concentrates

DTPMP

Polyacrylate and without AS

Methods

Ecotoxicological asessment:

Chemical characterisation of phosphonates:

Determination of AS concentrations in standards, technical products and concentrates via IC-IC-MS, IC-ESI-TOF and IC-ESI-MS/MS

Results and Discussion

Antiscalants

Table 1: Overview of ecotoxicological effects from AS technical products and standards in a comprehensive bioassay battery. All biotests were performed in 3 valid independent replicates (* less than 3 replicates performed).

Acute toxicity:

- AS partly induce toxicity in laboratory model organisms- especially toward algae
- Algae toxicity is possibly due to nutrient complexation [2]
- ATMP and DTPMP show effects in the range of potentially environmentally relevant concentrations
- Big fraction (370-520 Da) of technical product polyacrylic acid 2 is not toxic to daphnids, whereas the fraction with smaler polymers (=<300 Da) shows a significant toxic effect

Mechanism-specific toxicity:

No toxic effects

RO Concentrates

Table 2: Overview of ecotoxicological effects from RO concentrates in a comprehensive bioassay battery. All biotests were performed in 3 valid independent replicates (grey boxes = experiments not jet performed; * less than 3 replicates performed).

→ Low acute toxicity toward daphnids and fish (here: premature hatching observed) could be due to the high salt content of the concentrates^[3]

- → endocrine activity was detected in concentrate A,B,C
- → Measured concentrations of ATMP and DTPMP in the concentrates below the acute toxicity threshold of the standards and technical products

Highlights

- AS standards and technical products induced no to moderate toxicity in environmentally relevant concentrations
- Preliminary toxicity ranking of phosphonate-based AS:

PBTC < ATMP < DTPMP

- AS technical products can be more toxic than the active ingredient alone (potentially due to unknown additives)
- First results show low to moderate toxicity of concentrates

Find out more.

Outlook

- Further ecotoxicological investigations will be performed concerning
 - → Swimming behavior alterations in AS exposed zebrafish larvae
 - → Impact of high salinity in concentrates
 - → Complete Biotest battery on concentrates
- Further chemical profiling of trace substances in concentrates

